Incorporate Support Vector Machines to Content-Based Image Retrieval with Relevant Feedback
نویسندگان
چکیده
By using relevance feedback [6], Content -Based Image Retrieval (CBIR) allows the user to retrieve images interactively. Begin with a coarse query , t he user can select the most relevant images and provide a weight of preference for each relevant image to refine the query . The high level concept borne by the user and perception subjectivity of the user can be automatically captured by the system to some degree. This paper proposes an approach to utilize both positive and negat ive feedbacks for image retrieval. Support Vector Machines (SVM) is applied to classifying the positive and negative images. The SVM learning results are used to update the preference weights for the relevant images. This approach releases the user from manually providing preference weight for each positive example. Experimental results show that the proposed approach has improvement over the previous approach [5] that uses positive examples only.
منابع مشابه
Using Biased Support Vector Machine to Improve Retrieval Result in Image Retrieval with Self-organizing Map
The relevance feedback approach is a powerful technique in content-based image retrieval (CBIR) tasks. In past years, many intraquery learning techniques have been proposed to solve the relevance feedback problem. Among these techniques, Support Vector Machines (SVM) have shown promising results in the area. More specifically, in relevance feedback applications the SVMs are typically been used ...
متن کاملUpdate Relevant Image Weights for Content-Based Image Retrieval using Support Vector Machines
Relevance feedback [1] has been a powerful tool for interactive Content-Based Image Retrieval (CBIR). During the retrieval process, the user selects the most relevant images and provides a weight of preference for each relevant image. User’s high level query and perception subjectivity can be captured to some extent by dynamically updated low-level feature weights based on the user’s feedback. ...
متن کاملDynamic Feature Space Selection in Relevance Feedback Using Support Vector Machines
The selection of relevant features plays a critical role in relevance feedback for content-based image retrieval. In this paper, we propose an approach for dynamically selecting the most relevant feature space in relevance feedback. During the feedback process, an SVM classifier is constructed in each feature space, and its generalization error is estimated. The feature space with the smallest ...
متن کاملComposite Relevance Feedback for Image Retrieval
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to ach...
متن کاملCombining Gaussian Mixture Models and Support Vector Machines for Relevance Feedback in Content Based Image Retrieval
A relevance feedback (RF) approach for content based image retrieval (CBIR) is proposed, which combines Support Vector Machines (SVMs) with Gaussian Mixture (GM) models. Specifically, it constructs GM models of the image features distribution to describe the image content and trains an SVM classifier to distinguish between the relevant and irrelevant images according to the preferences of the u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000